Chapter 7: Problem 73
Let \(a_{n}=\frac{n+1}{n}\). Discuss the convergence of \(\left\\{a_{n}\right\\}\) and \(\sum_{n=1}^{\infty} a_{n}\).
Chapter 7: Problem 73
Let \(a_{n}=\frac{n+1}{n}\). Discuss the convergence of \(\left\\{a_{n}\right\\}\) and \(\sum_{n=1}^{\infty} a_{n}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeAn electronic games manufacturer producing a new product estimates the annual sales to be 8000 units. Each year, \(10 \%\) of the units that have been sold will become inoperative. So, 8000 units will be in use after 1 year, \([8000+0.9(8000)]\) units will be in use after 2 years, and so on. How many units will be in use after \(n\) years?
Suppose that \(\sum a_{n}\) and \(\sum b_{n}\) are series with positive terms. Prove that if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0\) and \(\sum b_{n}\) converges, \(\Sigma a_{n}\) also converges.
Determine the convergence or divergence of the series. $$ \sum_{n=0}^{\infty}(1.075)^{n} $$
In Exercises 87 and 88 , use a graphing utility to graph the function. Identify the horizontal asymptote of the graph and determine its relationship to the sum of the series. $$ \frac{\text { Function }}{f(x)=3\left[\frac{1-(0.5)^{x}}{1-0.5}\right]} \frac{\text { Series }}{\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n}} $$
Compute the first six terms of the sequence \(\left\\{a_{n}\right\\}=\left\\{\left(1+\frac{1}{n}\right)^{n}\right\\}\) If the sequence converges, find its limit.
What do you think about this solution?
We value your feedback to improve our textbook solutions.