Chapter 7: Problem 71
Define a geometric series, state when it converges, and give the formula for the sum of a convergent geometric series.
Chapter 7: Problem 71
Define a geometric series, state when it converges, and give the formula for the sum of a convergent geometric series.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\sum a_{n}\) be a convergent series, and let \(R_{N}=a_{N+1}+a_{N+2}+\cdots\) be the remainder of the series after the first \(N\) terms. Prove that \(\lim _{N \rightarrow \infty} R_{N}=0\).
(a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots $$
Consider the formula \(\frac{1}{x-1}=1+x+x^{2}+x^{3}+\cdots\) Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning. (a) \(\frac{1}{2}=1-1+1-1+\cdots\) (b) \(-1=1+2+4+8+\cdots\)
Find the sum of the convergent series. $$ \sum_{n=1}^{\infty} \frac{1}{9 n^{2}+3 n-2} $$
Consider the sequence \(\left\\{a_{n}\right\\}\) where \(a_{1}=\sqrt{k}, a_{n+1}=\sqrt{k+a_{n}}\), and \(k>0\) (a) Show that \(\left\\{a_{n}\right\\}\) is increasing and bounded. (b) Prove that \(\lim _{n \rightarrow \infty} a_{n}\) exists. (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.