Chapter 7: Problem 69
Use the Root Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n}{4^{n}} $$
Chapter 7: Problem 69
Use the Root Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n}{4^{n}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\) th toss is given by \(P(n)=\left(\frac{1}{2}\right)^{n},\) where \(n \geq 1\) (a) Show that \(\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1\). (b) The expected number of tosses required until the first head occurs in the experiment is given by \(\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}\) Is this series geometric? (c) Use a computer algebra system to find the sum in part (b).
(a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots $$
Consider the formula \(\frac{1}{x-1}=1+x+x^{2}+x^{3}+\cdots\) Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning. (a) \(\frac{1}{2}=1-1+1-1+\cdots\) (b) \(-1=1+2+4+8+\cdots\)
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{3 n-1}{2 n+1} $$
Use a graphing utility to graph the function. Identify the horizontal asymptote of the graph and determine its relationship to the sum of the series. $$ \frac{\text { Function }}{f(x)=2\left[\frac{1-(0.8)^{x}}{1-0.8}\right]} \frac{\text { Series }}{\sum_{n=0}^{\infty} 2\left(\frac{4}{5}\right)^{n}} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.