Chapter 7: Problem 58
Use the Limit Comparison Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n-1}} $$
Chapter 7: Problem 58
Use the Limit Comparison Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n}{(n+1) 2^{n-1}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the convergence or divergence of the series. $$ \sum_{n=0}^{\infty} \frac{4}{2^{n}} $$
The ball in Exercise 95 takes the following times for each fall. $$ \begin{array}{ll} s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\ s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\ s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\ s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \end{array} $$ \(\vdots\) $$ s_{n}=-16 t^{2}+16(0.81)^{n-1}, \quad s_{n}=0 \text { if } t=(0.9)^{n-1} $$ Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\) Find this total time.
A company buys a machine for \(\$ 225,000\) that depreciates at a rate of \(30 \%\) per year. Find a formula for the value of the machine after \(n\) years. What is its value after 5 years?
A fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\) th toss is given by \(P(n)=\left(\frac{1}{2}\right)^{n},\) where \(n \geq 1\) (a) Show that \(\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1\). (b) The expected number of tosses required until the first head occurs in the experiment is given by \(\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}\) Is this series geometric? (c) Use a computer algebra system to find the sum in part (b).
Find the sum of the convergent series. $$ 1+0.1+0.01+0.001+\cdots $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.