Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(55-58,\) the series represents a well-known function. Use a computer algebra system to graph the partial sum \(S_{10}\) and identify the function from the graph. $$ f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !} $$

Short Answer

Expert verified
The function represented by the series is the sine function.

Step by step solution

01

Calculate the partial sum

Use a computer algebra system to calculate the partial sum \(S_{10}\) of the series. To do this, replace the upper limit of the sum from \(\infty\) to \(10\). This gives the partial sum \(S_{10} = \sum_{n=0}^{10}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}\).
02

Graph the partial sum

With the use of the computer algebra system, graph \(S_{10}\) on a set of axes. Observe the shape, intersection points, and general behavior of the graph.
03

Identify the function

Compare the graph of the partial sum \(S_{10}\) to the plots of well-known functions. The shape of the graph should resemble one of these functions. After analyzing the graph, it can be determined that the graph matches the graph of sine due to its wave-like characteristics. This leads to the conclusion that the original series represents the sine function.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers $$ 0 . \overline{9} $$

(a) Show that \(\int_{1}^{n} \ln x d x<\ln (n !)\) for \(n \geq 2\). (b) Draw a graph similar to the one above that shows \(\ln (n !)<\int_{1}^{n+1} \ln x d x\) (c) Use the results of parts (a) and (b) to show that \(\frac{n^{n}}{e^{n-1}}1\) (d) Use the Squeeze Theorem for Sequences and the result of part (c) to show that \(\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n !}}{n}=\frac{1}{e}\) (e) Test the result of part (d) for \(n=20,50,\) and 100 .

Suppose that \(\sum a_{n}\) and \(\sum b_{n}\) are series with positive terms. Prove that if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0\) and \(\sum b_{n}\) converges, \(\Sigma a_{n}\) also converges.

Modeling Data The annual sales \(a_{n}\) (in millions of dollars) for Avon Products, Inc. from 1993 through 2002 are given below as ordered pairs of the form \(\left(n, a_{n}\right),\) where \(n\) represents the year, with \(n=3\) corresponding to 1993. (Source: 2002 Avon Products, Inc. Annual Report) (3,3844),(4,4267),(5,4492),(6,4814),(7,5079) (8,5213),(9,5289),(10,5682),(11,5958),(12,6171) (a) Use the regression capabilities of a graphing utility to find a model of the form \(a_{n}=b n+c, \quad n=3,4, \ldots, 12\) for the data. Graphically compare the points and the model. (b) Use the model to predict sales in the year 2008 .

Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free