Chapter 7: Problem 55
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right) $$
Chapter 7: Problem 55
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\) th toss is given by \(P(n)=\left(\frac{1}{2}\right)^{n},\) where \(n \geq 1\) (a) Show that \(\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1\). (b) The expected number of tosses required until the first head occurs in the experiment is given by \(\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}\) Is this series geometric? (c) Use a computer algebra system to find the sum in part (b).
Conjecture Let \(x_{0}=1\) and consider the sequence \(x_{n}\) given by the formula \(x_{n}=\frac{1}{2} x_{n-1}+\frac{1}{x_{n-1}}, \quad n=1,2, \ldots .\) Use a graphing utility to compute the first 10 terms of the sequence and make a conjecture about the limit of the sequence.
Fibonacci Sequence In a study of the progeny of rabbits, Fibonacci (ca. \(1170-\) ca. 1240 ) encountered the sequence now bearing his name. It is defined recursively by \(a_{n+2}=a_{n}+a_{n+1}, \quad\) where \(\quad a_{1}=1\) and \(a_{2}=1\) (a) Write the first 12 terms of the sequence. (b) Write the first 10 terms of the sequence defined by \(b_{n}=\frac{a_{n+1}}{a_{n}}, \quad n \geq 1\) (c) Using the definition in part (b), show that $$ b_{n}=1+\frac{1}{b_{n-1}} $$ (d) The golden ratio \(\rho\) can be defined by \(\lim _{n \rightarrow \infty} b_{n}=\rho .\) Show that \(\rho=1+1 / \rho\) and solve this equation for \(\rho\).
Find the sum of the convergent series. $$ \sum_{n=1}^{\infty}(\sin 1)^{n} $$
(a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers $$ 0 . \overline{81} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.