Chapter 7: Problem 53
State the definition of an \(n\) th-degree Taylor polynomial of \(f\) centered at \(c .\)
Chapter 7: Problem 53
State the definition of an \(n\) th-degree Taylor polynomial of \(f\) centered at \(c .\)
All the tools & learning materials you need for study success - in one app.
Get started for free(a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The series \(\sum_{n=1}^{\infty} \frac{n}{1000(n+1)}\) diverges.
In Exercises \(103-106,\) use the formula for the \(n\) th partial sum of a geometric series $$\sum_{i=0}^{n-1} a r^{i}=\frac{a\left(1-r^{n}\right)}{1-r}$$ The winner of a \(\$ 1,000,000\) sweepstakes will be paid \(\$ 50,000\) per year for 20 years. The money earns \(6 \%\) interest per year. The present value of the winnings is \(\sum_{n=1}^{20} 50,000\left(\frac{1}{1.06}\right)^{n}\) Compute the present value and interpret its meaning.
(a) You delete a finite number of terms from a divergent series. Will the new series still diverge? Explain your reasoning. (b) You add a finite number of terms to a convergent series. Will the new series still converge? Explain your reasoning.
Find the sum of the convergent series. $$ 1+0.1+0.01+0.001+\cdots $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.