Chapter 7: Problem 51
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n !}{n 3^{n}} $$
Chapter 7: Problem 51
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n !}{n 3^{n}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind all values of \(x\) for which the series converges. For these values of \(x,\) write the sum of the series as a function of \(x\). $$ \sum_{n=1}^{\infty}\left(\frac{x^{2}}{x^{2}+4}\right)^{n} $$
Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.
Consider the sequence \(\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots\) (a) Compute the first five terms of this sequence. (b) Write a recursion formula for \(a_{n}, n \geq 2\). (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
In Exercises 85 and \(86,\) (a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1+x+x^{2}+x^{3}+\cdots $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\sum_{n=1}^{\infty} a_{n}=L,\) then \(\sum_{n=0}^{\infty} a_{n}=L+a_{0}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.