Chapter 7: Problem 48
Find the sum of the convergent series by using a well-known function. Identify the function and explain how you obtained the sum. $$ \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} $$
Chapter 7: Problem 48
Find the sum of the convergent series by using a well-known function. Identify the function and explain how you obtained the sum. $$ \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1} $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) You delete a finite number of terms from a divergent series. Will the new series still diverge? Explain your reasoning. (b) You add a finite number of terms to a convergent series. Will the new series still converge? Explain your reasoning.
The ball in Exercise 95 takes the following times for each fall. $$ \begin{array}{ll} s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\ s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\ s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\ s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \end{array} $$ \(\vdots\) $$ s_{n}=-16 t^{2}+16(0.81)^{n-1}, \quad s_{n}=0 \text { if } t=(0.9)^{n-1} $$ Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\) Find this total time.
The random variable \(\boldsymbol{n}\) represents the number of units of a product sold per day in a store. The probability distribution of \(n\) is given by \(P(n) .\) Find the probability that two units are sold in a given day \([P(2)]\) and show that \(P(1)+P(2)+P(3)+\cdots=1\). $$ P(n)=\frac{1}{3}\left(\frac{2}{3}\right)^{n} $$
A company buys a machine for \(\$ 225,000\) that depreciates at a rate of \(30 \%\) per year. Find a formula for the value of the machine after \(n\) years. What is its value after 5 years?
(a) write the repeating decimal as a geometric series and (b) write its sum as the ratio of two integers $$ 0.2 \overline{15} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.