Chapter 7: Problem 47
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} $$
Chapter 7: Problem 47
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. \(0.75=0.749999 \ldots \ldots\)
Find the values of \(x\) for which the infinite series \(1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}+\cdots\) converges. What is the sum when the series converges?
Find the sum of the convergent series. $$ 1+0.1+0.01+0.001+\cdots $$
Consider the formula \(\frac{1}{x-1}=1+x+x^{2}+x^{3}+\cdots\) Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning. (a) \(\frac{1}{2}=1-1+1-1+\cdots\) (b) \(-1=1+2+4+8+\cdots\)
The Fibonacci sequence is defined recursively by \(a_{n+2}=a_{n}+a_{n+1},\) where \(a_{1}=1\) and \(a_{2}=1\) (a) Show that \(\frac{1}{a_{n+1} a_{n+3}}=\frac{1}{a_{n+1} a_{n+2}}-\frac{1}{a_{n+2} a_{n+3}}\). (b) Show that \(\sum_{n=0}^{\infty} \frac{1}{a_{n+1} a_{n+3}}=1\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.