Chapter 7: Problem 47
Use the Direct Comparison Test to determine the convergence or divergence of the series. $$ \sum_{n=0}^{\infty} \frac{1}{n !} $$
Chapter 7: Problem 47
Use the Direct Comparison Test to determine the convergence or divergence of the series. $$ \sum_{n=0}^{\infty} \frac{1}{n !} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\left\\{a_{n}\right\\}\) be a monotonic sequence such that \(a_{n} \leq 1\). Discuss the convergence of \(\left\\{a_{n}\right\\} .\) If \(\left\\{a_{n}\right\\}\) converges, what can you conclude about its limit?
Consider the sequence \(\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots\) (a) Compute the first five terms of this sequence. (b) Write a recursion formula for \(a_{n}, n \geq 2\). (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
Determine the convergence or divergence of the series. $$ \sum_{n=2}^{\infty} \frac{n}{\ln n} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\sum_{n=1}^{\infty} a_{n}=L,\) then \(\sum_{n=0}^{\infty} a_{n}=L+a_{0}\).
The ball in Exercise 95 takes the following times for each fall. $$ \begin{array}{ll} s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\ s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\ s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\ s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \end{array} $$ \(\vdots\) $$ s_{n}=-16 t^{2}+16(0.81)^{n-1}, \quad s_{n}=0 \text { if } t=(0.9)^{n-1} $$ Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\) Find this total time.
What do you think about this solution?
We value your feedback to improve our textbook solutions.