Chapter 7: Problem 44
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} n\left(\frac{3}{2}\right)^{n} $$
Chapter 7: Problem 44
Use the Ratio Test to determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} n\left(\frac{3}{2}\right)^{n} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 85 and \(86,\) (a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1+x+x^{2}+x^{3}+\cdots $$
Let \(a_{n}=\frac{n+1}{n}\). Discuss the convergence of \(\left\\{a_{n}\right\\}\) and \(\sum_{n=1}^{\infty} a_{n}\).
Find the sum of the convergent series. $$ \sum_{n=1}^{\infty}\left[(0.7)^{n}+(0.9)^{n}\right] $$
The ball in Exercise 95 takes the following times for each fall. $$ \begin{array}{ll} s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\ s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\ s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\ s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \end{array} $$ \(\vdots\) $$ s_{n}=-16 t^{2}+16(0.81)^{n-1}, \quad s_{n}=0 \text { if } t=(0.9)^{n-1} $$ Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\) Find this total time.
Government Expenditures A government program that currently costs taxpayers $$\$ 2.5$$ billion per year is cut back by 20 percent per year. (a) Write an expression for the amount budgeted for this program after \(n\) years. (b) Compute the budgets for the first 4 years. (c) Determine the convergence or divergence of the sequence of reduced budgets. If the sequence converges, find its limit.
What do you think about this solution?
We value your feedback to improve our textbook solutions.