Chapter 7: Problem 41
Find the sum of the convergent series. $$ 3-1+\frac{1}{3}-\frac{1}{9}+\cdots $$
Chapter 7: Problem 41
Find the sum of the convergent series. $$ 3-1+\frac{1}{3}-\frac{1}{9}+\cdots $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that the series \(\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}\) converges.
Modeling Data The annual sales \(a_{n}\) (in millions of dollars) for Avon Products, Inc. from 1993 through 2002 are given below as ordered pairs of the form \(\left(n, a_{n}\right),\) where \(n\) represents the year, with \(n=3\) corresponding to 1993. (Source: 2002 Avon Products, Inc. Annual Report) (3,3844),(4,4267),(5,4492),(6,4814),(7,5079) (8,5213),(9,5289),(10,5682),(11,5958),(12,6171) (a) Use the regression capabilities of a graphing utility to find a model of the form \(a_{n}=b n+c, \quad n=3,4, \ldots, 12\) for the data. Graphically compare the points and the model. (b) Use the model to predict sales in the year 2008 .
(a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots $$
A company buys a machine for \(\$ 225,000\) that depreciates at a rate of \(30 \%\) per year. Find a formula for the value of the machine after \(n\) years. What is its value after 5 years?
Consider the sequence \(\left\\{a_{n}\right\\}=\left\\{\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+(k / n)}\right\\}\). (a) Write the first five terms of \(\left\\{a_{n}\right\\}\) (b) Show that \(\lim _{n \rightarrow \infty} a_{n}=\ln 2\) by interpreting \(a_{n}\) as a Riemann sum of a definite integral.
What do you think about this solution?
We value your feedback to improve our textbook solutions.