Chapter 7: Problem 37
Find the sum of the convergent series. $$ \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} $$
Chapter 7: Problem 37
Find the sum of the convergent series. $$ \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. \(0.75=0.749999 \ldots \ldots\)
Define a geometric series, state when it converges, and give the formula for the sum of a convergent geometric series.
Government Expenditures A government program that currently costs taxpayers $$\$ 2.5$$ billion per year is cut back by 20 percent per year. (a) Write an expression for the amount budgeted for this program after \(n\) years. (b) Compute the budgets for the first 4 years. (c) Determine the convergence or divergence of the sequence of reduced budgets. If the sequence converges, find its limit.
Consider the formula \(\frac{1}{x-1}=1+x+x^{2}+x^{3}+\cdots\) Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning. (a) \(\frac{1}{2}=1-1+1-1+\cdots\) (b) \(-1=1+2+4+8+\cdots\)
Use a graphing utility to graph the function. Identify the horizontal asymptote of the graph and determine its relationship to the sum of the series. $$ \frac{\text { Function }}{f(x)=2\left[\frac{1-(0.8)^{x}}{1-0.8}\right]} \frac{\text { Series }}{\sum_{n=0}^{\infty} 2\left(\frac{4}{5}\right)^{n}} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.