Chapter 7: Problem 17
In Exercises \(7-18\), find the Maclaurin polynomial of degree \(n\) for the function. $$ f(x)=\sec x, \quad n=2 $$
Chapter 7: Problem 17
In Exercises \(7-18\), find the Maclaurin polynomial of degree \(n\) for the function. $$ f(x)=\sec x, \quad n=2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 87 and 88 , use a graphing utility to graph the function. Identify the horizontal asymptote of the graph and determine its relationship to the sum of the series. $$ \frac{\text { Function }}{f(x)=3\left[\frac{1-(0.5)^{x}}{1-0.5}\right]} \frac{\text { Series }}{\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n}} $$
In Exercises 91-94, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\left\\{a_{n}\right\\}\) converges to 3 and \(\left\\{b_{n}\right\\}\) converges to 2 , then \(\left\\{a_{n}+b_{n}\right\\}\) converges to 5 .
Suppose that \(\sum a_{n}\) and \(\sum b_{n}\) are series with positive terms. Prove that if \(\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty\) and \(\sum b_{n}\) diverges, \(\sum a_{n}\) also diverges.
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\sum_{n=1}^{\infty} a_{n}=L,\) then \(\sum_{n=0}^{\infty} a_{n}=L+a_{0}\).
The random variable \(\boldsymbol{n}\) represents the number of units of a product sold per day in a store. The probability distribution of \(n\) is given by \(P(n) .\) Find the probability that two units are sold in a given day \([P(2)]\) and show that \(P(1)+P(2)+P(3)+\cdots=1\). $$ P(n)=\frac{1}{3}\left(\frac{2}{3}\right)^{n} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.