Chapter 7: Problem 14
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{\sqrt[3]{n}} $$
Chapter 7: Problem 14
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{\sqrt[3]{n}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConjecture Let \(x_{0}=1\) and consider the sequence \(x_{n}\) given by the formula \(x_{n}=\frac{1}{2} x_{n-1}+\frac{1}{x_{n-1}}, \quad n=1,2, \ldots .\) Use a graphing utility to compute the first 10 terms of the sequence and make a conjecture about the limit of the sequence.
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The series \(\sum_{n=1}^{\infty} \frac{n}{1000(n+1)}\) diverges.
Consider the sequence \(\left\\{a_{n}\right\\}\) where \(a_{1}=\sqrt{k}, a_{n+1}=\sqrt{k+a_{n}}\), and \(k>0\) (a) Show that \(\left\\{a_{n}\right\\}\) is increasing and bounded. (b) Prove that \(\lim _{n \rightarrow \infty} a_{n}\) exists. (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
Find the sum of the convergent series. $$ \sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}-\frac{1}{3^{n}}\right) $$
Consider making monthly deposits of \(P\) dollars in a savings account at an annual interest rate \(r .\) Use the results of Exercise 106 to find the balance \(A\) after \(t\) years if the interest is compounded (a) monthly and (b) continuously. $$ P=\$ 75, \quad r=5 \%, \quad t=25 \text { years } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.