Chapter 7: Problem 118
Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.
Chapter 7: Problem 118
Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.
All the tools & learning materials you need for study success - in one app.
Get started for freeWriting In Exercises 89 and 90 , use a graphing utility to determine the first term that is less than 0.0001 in each of the convergent series. Note that the answers are very different. Explain how this will affect the rate at which each series converges. $$ \sum_{n=1}^{\infty} \frac{1}{n(n+1)} $$
Show that the series \(\sum_{n=1}^{\infty} a_{n}\) can be written in the telescoping form \(\sum_{n=1}^{\infty}\left[\left(c-S_{n-1}\right)-\left(c-S_{n}\right)\right]\) where \(S_{0}=0\) and \(S_{n}\) is the \(n\) th partial sum.
Give an example of a sequence satisfying the condition or explain why no such sequence exists. (Examples are not unique.) A monotonically increasing bounded sequence that does not converge
Government Expenditures A government program that currently costs taxpayers $$\$ 2.5$$ billion per year is cut back by 20 percent per year. (a) Write an expression for the amount budgeted for this program after \(n\) years. (b) Compute the budgets for the first 4 years. (c) Determine the convergence or divergence of the sequence of reduced budgets. If the sequence converges, find its limit.
Find the values of \(x\) for which the infinite series \(1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}+\cdots\) converges. What is the sum when the series converges?
What do you think about this solution?
We value your feedback to improve our textbook solutions.