Chapter 7: Problem 116
Let \(\sum a_{n}\) be a convergent series, and let \(R_{N}=a_{N+1}+a_{N+2}+\cdots\) be the remainder of the series after the first \(N\) terms. Prove that \(\lim _{N \rightarrow \infty} R_{N}=0\).
Chapter 7: Problem 116
Let \(\sum a_{n}\) be a convergent series, and let \(R_{N}=a_{N+1}+a_{N+2}+\cdots\) be the remainder of the series after the first \(N\) terms. Prove that \(\lim _{N \rightarrow \infty} R_{N}=0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that the series \(\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}\) converges.
(a) find the common ratio of the geometric series, \((b)\) write the function that gives the sum of the series, and (c) use a graphing utility to graph the function and the partial sums \(S_{3}\) and \(S_{5} .\) What do you notice? $$ 1-\frac{x}{2}+\frac{x^{2}}{4}-\frac{x^{3}}{8}+\cdots $$
Prove that if \(\left\\{s_{n}\right\\}\) converges to \(L\) and \(L>0,\) then there exists a number \(N\) such that \(s_{n}>0\) for \(n>N\).
Probability In Exercises 97 and 98, the random variable \(\boldsymbol{n}\) represents the number of units of a product sold per day in a store. The probability distribution of \(n\) is given by \(P(n) .\) Find the probability that two units are sold in a given day \([P(2)]\) and show that \(P(1)+P(2)+P(3)+\cdots=1\). $$ P(n)=\frac{1}{2}\left(\frac{1}{2}\right)^{n} $$
Given two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.
What do you think about this solution?
We value your feedback to improve our textbook solutions.