Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. \(0.75=0.749999 \ldots \ldots\)

Short Answer

Expert verified
True

Step by step solution

01

Analyzing the statement

The statement claims that the real number represented by 0.75 is equal to the number represented by 0.749999.... In mathematics, the '...' signifies that the previous term is repeated indefinitely; in this case, the 9 is repeated.
02

Evaluating the claim

To determine if this claim is accurate, consider what happens when 0.749999.... is rounded. Although it seems less than 0.75 at first glance, if continued indefinitely, the number approaches 0.75. This is due to the concept of 'limit', a fundamental concept in calculus, where an infinite series of numbers or terms can approach a finite value. In this case, the infinite series of 9's (after the decimal point) approaches a limit of 0.75.
03

Conclusion

Since 0.749999.... approaches 0.75 as the number of decimal places increases, we can conclude that 0.75 equals 0.749999.... Hence, the initial statement is True.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A fair coin is tossed repeatedly. The probability that the first head occurs on the \(n\) th toss is given by \(P(n)=\left(\frac{1}{2}\right)^{n},\) where \(n \geq 1\) (a) Show that \(\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=1\). (b) The expected number of tosses required until the first head occurs in the experiment is given by \(\sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^{n}\) Is this series geometric? (c) Use a computer algebra system to find the sum in part (b).

Determine the convergence or divergence of the series. $$ \sum_{n=0}^{\infty}(1.075)^{n} $$

Let \(a_{n}=\frac{n+1}{n}\). Discuss the convergence of \(\left\\{a_{n}\right\\}\) and \(\sum_{n=1}^{\infty} a_{n}\).

Modeling Data The annual sales \(a_{n}\) (in millions of dollars) for Avon Products, Inc. from 1993 through 2002 are given below as ordered pairs of the form \(\left(n, a_{n}\right),\) where \(n\) represents the year, with \(n=3\) corresponding to 1993. (Source: 2002 Avon Products, Inc. Annual Report) (3,3844),(4,4267),(5,4492),(6,4814),(7,5079) (8,5213),(9,5289),(10,5682),(11,5958),(12,6171) (a) Use the regression capabilities of a graphing utility to find a model of the form \(a_{n}=b n+c, \quad n=3,4, \ldots, 12\) for the data. Graphically compare the points and the model. (b) Use the model to predict sales in the year 2008 .

Show that the series \(\sum_{n=1}^{\infty} a_{n}\) can be written in the telescoping form \(\sum_{n=1}^{\infty}\left[\left(c-S_{n-1}\right)-\left(c-S_{n}\right)\right]\) where \(S_{0}=0\) and \(S_{n}\) is the \(n\) th partial sum.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free