Chapter 7: Problem 111
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(|r|<1,\) then \(\sum_{n=1}^{\infty} a r^{n}=\frac{a}{(1-r)} .\)
Chapter 7: Problem 111
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(|r|<1,\) then \(\sum_{n=1}^{\infty} a r^{n}=\frac{a}{(1-r)} .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \frac{n+1}{2 n-1} $$
Conjecture Let \(x_{0}=1\) and consider the sequence \(x_{n}\) given by the formula \(x_{n}=\frac{1}{2} x_{n-1}+\frac{1}{x_{n-1}}, \quad n=1,2, \ldots .\) Use a graphing utility to compute the first 10 terms of the sequence and make a conjecture about the limit of the sequence.
In Exercises 81-84, give an example of a sequence satisfying the condition or explain why no such sequence exists. (Examples are not unique.) A monotonically increasing sequence that converges to 10
A ball is dropped from a height of 16 feet. Each time it drops \(h\) feet, it rebounds \(0.81 h\) feet. Find the total distance traveled by the ball.
Consider the sequence \(\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots\) (a) Compute the first five terms of this sequence. (b) Write a recursion formula for \(a_{n}, n \geq 2\). (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.