Chapter 7: Problem 105
Let \(\left\\{x_{n}\right\\}, n \geq 0,\) be a sequence of nonzero real numbers such that \(x_{n}^{2}-x_{n-1} x_{n+1}=1\) for \(n=1,2,3, \ldots .\) Prove that there exists a real number \(a\) such that \(x_{n+1}=a x_{n}-x_{n-1},\) for all \(n \geq 1 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.