Chapter 6: Problem 96
Let \(\int_{-\infty}^{\infty} f(x) d x\) be convergent and let \(a\) and \(b\) be real numbers where \(a \neq b\). Show that \(\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\int_{-\infty}^{b} f(x) d x+\int_{b}^{\infty} f(x) d x\)