Chapter 6: Problem 94
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, u=\sqrt{1-x} $$
Chapter 6: Problem 94
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, u=\sqrt{1-x} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe magnetic potential \(P\) at a point on the axis of a circular coil is given by \(P=\frac{2 \pi N I r}{k} \int_{c}^{\infty} \frac{1}{\left(r^{2}+x^{2}\right)^{3 / 2}} d x\) where \(N, I, r, k,\) and \(c\) are constants. Find \(P\)
In Exercises 65 and 66, apply the Extended Mean Value Theorem to the functions \(f\) and \(g\) on the given interval. Find all values \(c\) in the interval \((a, b)\) such that \(\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\) \(\begin{array}{l} \underline{\text { Functions }} \\ f(x)=\sin x, \quad g(x)=\cos x \end{array} \quad \frac{\text { Interval }}{\left[0, \frac{\pi}{2}\right]}\)
Surface Area Find the area of the surface formed by revolving the graph of \(y=2 e^{-x}\) on the interval \([0, \infty)\) about the \(x\) -axis.
Find the area of the region bounded by the graphs of the equations.$$ y=\sin x, \quad y=\sin ^{3} x, \quad x=0, \quad x=\pi / 2 $$
Show that \(\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0\) for any integer \(n>0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.