Chapter 6: Problem 93
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, \quad u=\sqrt{x} $$
Chapter 6: Problem 93
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, \quad u=\sqrt{x} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the integral. Use a computer algebra system to confirm your result. $$ \int \csc ^{4} \theta d \theta $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f^{\prime}\) is continuous on \([0, \infty)\) and \(\lim _{x \rightarrow \infty} f(x)=0,\) then \(\int_{0}^{\infty} f^{\prime}(x) d x=-f(0)\)
For the region bounded by the graphs of the equations, find: (a) the volume of the solid formed by revolving the region about the \(x\) -axis and (b) the centroid of the region. $$ y=\sin x, y=0, x=0, x=\pi $$
Define the terms converges and diverges when working with improper integrals.
(a) Let \(f^{\prime}(x)\) be continuous. Show that \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)\) (b) Explain the result of part (a) graphically.
What do you think about this solution?
We value your feedback to improve our textbook solutions.