Chapter 6: Problem 92
Find the volume of the solid generated by revolving the unbounded region lying between \(y=-\ln x\) and the \(y\) -axis \((y \geq 0)\) about the \(x\) -axis.
Chapter 6: Problem 92
Find the volume of the solid generated by revolving the unbounded region lying between \(y=-\ln x\) and the \(y\) -axis \((y \geq 0)\) about the \(x\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the solid generated by revolving the region bounded by the
graph of \(f\) about the \(x\) -axis.
\(f(x)=\left\\{\begin{array}{ll}x \ln x, & 0
In your own words, describe how you would integrate \(\int \sin ^{m} x \cos ^{n} x d x\) for each condition. (a) \(m\) is positive and odd. (b) \(n\) is positive and odd. (c) \(m\) and \(n\) are both positive and even.
Think About It In Exercises 55-58, L'Hopital's Rule is used incorrectly. Describe the error.\(\begin{aligned} \lim _{x \rightarrow \infty} \operatorname{xec} \operatorname{sen} \frac{1}{x} &=\lim _{x \rightarrow \infty} \frac{\cos (1 / x)}{1 / x} \\ &=\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)]\left(1 / x^{2}\right)}{-1 \times x^{2}} \\ &=0 \end{aligned}\)
The region bounded by \((x-2)^{2}+y^{2}=1\) is revolved about the \(y\) -axis to form a torus. Find the surface area of the torus.
A nonnegative function \(f\) is called a probability density function if \(\int_{-\infty}^{\infty} f(t) d t=1 .\) The probability that \(x\) lies between \(a\) and \(b\) is given by \(P(a \leq x \leq b)=\int_{a}^{b} f(t) d t\) The expected value of \(x\) is given by \(E(x)=\int_{-\infty}^{\infty} t f(t) d t\). Show that the nonnegative function is a probability density function, (b) find \(P(0 \leq x \leq 4),\) and (c) find \(E(x)\).$$ f(t)=\left\\{\begin{array}{ll} \frac{2}{5} e^{-2 t / 5}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.