Chapter 6: Problem 80
Use a graphing utility to graph \(f(x)=\frac{x^{k}-1}{k}\) for \(k=1,0.1\), and 0.01 . Then evaluate the limit \(\lim _{k \rightarrow 0^{+}} \frac{x^{k}-1}{k}\).
Chapter 6: Problem 80
Use a graphing utility to graph \(f(x)=\frac{x^{k}-1}{k}\) for \(k=1,0.1\), and 0.01 . Then evaluate the limit \(\lim _{k \rightarrow 0^{+}} \frac{x^{k}-1}{k}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f^{\prime \prime}(x)\) be continuous. Show that $$ \lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x) $$
Explain why \(\int_{-1}^{1} \frac{1}{x^{3}} d x \neq 0\)
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) is continuous on \([0, \infty)\) and \(\int_{0}^{\infty} f(x) d x\) diverges, then \(\lim _{x \rightarrow \infty} f(x) \neq 0\)
Evaluate the definite integral. $$ \int_{-\pi}^{\pi} \sin 3 \theta \cos \theta d \theta $$
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, u=\sqrt{1-x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.