Chapter 6: Problem 75
Find the values of \(a\) and \(b\) such that \(\lim _{x \rightarrow 0} \frac{a-\cos b x}{x^{2}}=2\).
Chapter 6: Problem 75
Find the values of \(a\) and \(b\) such that \(\lim _{x \rightarrow 0} \frac{a-\cos b x}{x^{2}}=2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. $$ y=\tan x, \quad y=0, \quad x=-\pi / 4, \quad x=\pi / 4 $$
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, \quad u=\sqrt{x} $$
Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\cosh a t $$
Use a computer algebra system to evaluate the definite integral. In your own words, describe how you would integrate \(\int \sec ^{m} x \tan ^{n} x d x\) for each condition. (a) \(m\) is positive and even. (b) \(n\) is positive and odd. (c) \(n\) is positive and even, and there are no secant factors. (d) \(m\) is positive and odd, and there are no tangent factors.
(a) Let \(f^{\prime}(x)\) be continuous. Show that \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)\) (b) Explain the result of part (a) graphically.
What do you think about this solution?
We value your feedback to improve our textbook solutions.