Chapter 6: Problem 70
Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. $$ y=\cos \frac{x}{2}, \quad y=\sin \frac{x}{2}, \quad x=0, \quad x=\pi / 2 $$
Chapter 6: Problem 70
Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. $$ y=\cos \frac{x}{2}, \quad y=\sin \frac{x}{2}, \quad x=0, \quad x=\pi / 2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the integral. Use a computer algebra system to confirm your result. $$ \int \cot ^{3} 2 x d x $$
Show that \(\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0\) for any integer \(n>0\).
Let \(\int_{-\infty}^{\infty} f(x) d x\) be convergent and let \(a\) and \(b\) be real numbers where \(a \neq b\). Show that \(\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\int_{-\infty}^{b} f(x) d x+\int_{b}^{\infty} f(x) d x\)
Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1},\) where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1 .\) Then evaluate each integral. (a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\) (b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\) (c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)
Think About It In Exercises 55-58, L'Hopital's Rule is used incorrectly. Describe the error.\(\begin{aligned} \lim _{x \rightarrow \infty} \operatorname{xec} \operatorname{sen} \frac{1}{x} &=\lim _{x \rightarrow \infty} \frac{\cos (1 / x)}{1 / x} \\ &=\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)]\left(1 / x^{2}\right)}{-1 \times x^{2}} \\ &=0 \end{aligned}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.