Chapter 6: Problem 68
Find the area of the region bounded by the graphs of the equations. $$ y=\cos ^{2} x, \quad y=\sin x \cos x, \quad x=-\pi / 2, \quad x=\pi / 4 $$
Chapter 6: Problem 68
Find the area of the region bounded by the graphs of the equations. $$ y=\cos ^{2} x, \quad y=\sin x \cos x, \quad x=-\pi / 2, \quad x=\pi / 4 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLaplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\cosh a t $$
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\cot ^{2} t}{\csc t} d t $$
Find the values of \(a\) and \(b\) such that \(\lim _{x \rightarrow 0} \frac{a-\cos b x}{x^{2}}=2\).
Continuous Functions In Exercises 73 and \(74,\) find the value of \(c\) that makes the function continuous at \(x=0\). \(f(x)=\left\\{\begin{array}{ll}\frac{4 x-2 \sin 2 x}{2 x^{3}}, & x \neq 0 \\\ c, & x=0\end{array}\right.\)
A nonnegative function \(f\) is called a probability density function if \(\int_{-\infty}^{\infty} f(t) d t=1 .\) The probability that \(x\) lies between \(a\) and \(b\) is given by \(P(a \leq x \leq b)=\int_{a}^{b} f(t) d t\) The expected value of \(x\) is given by \(E(x)=\int_{-\infty}^{\infty} t f(t) d t\). Show that the nonnegative function is a probability density function, (b) find \(P(0 \leq x \leq 4),\) and (c) find \(E(x)\).$$ f(t)=\left\\{\begin{array}{ll} \frac{2}{5} e^{-2 t / 5}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.