Chapter 6: Problem 68
Area, use a graphing utility to graph the region bounded by the graphs of the equations, and find the area of the region. $$ y=x \sin x, y=0, x=0, x=\pi $$
Chapter 6: Problem 68
Area, use a graphing utility to graph the region bounded by the graphs of the equations, and find the area of the region. $$ y=x \sin x, y=0, x=0, x=\pi $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Use a graphing utility to graph the function \(y=e^{-x^{2}}\). (b) Show that \(\int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{1} \sqrt{-\ln y} d y\).
Prove the following generalization of the Mean Value Theorem. If \(f\) is twice differentiable on the closed interval \([a, b],\) then \(f(b)-f(a)=f^{\prime}(a)(b-a)-\int_{a}^{b} f^{\prime \prime}(t)(t-b) d t\).
Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1},\) where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1 .\) Then evaluate each integral. (a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\) (b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\) (c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)
Evaluate \(\lim _{x \rightarrow \infty}\left[\frac{1}{x} \cdot \frac{a^{x}-1}{a-1}\right]^{1 / x}\) where \(a>0, \quad a \neq 1\).
Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\cos a t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.