Chapter 6: Problem 66
Find the integral by using the appropriate formula. $$ \int x^{3} e^{2 x} d x $$
Chapter 6: Problem 66
Find the integral by using the appropriate formula. $$ \int x^{3} e^{2 x} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLaplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\sinh a t $$
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, \quad u=\sqrt{x} $$
Define the terms converges and diverges when working with improper integrals.
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, u=\sqrt{1-x} $$
Let \(\int_{-\infty}^{\infty} f(x) d x\) be convergent and let \(a\) and \(b\) be real numbers where \(a \neq b\). Show that \(\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\int_{-\infty}^{b} f(x) d x+\int_{b}^{\infty} f(x) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.