Chapter 6: Problem 63
In your own words, describe how you would integrate \(\int \sin ^{m} x \cos ^{n} x d x\) for each condition. (a) \(m\) is positive and odd. (b) \(n\) is positive and odd. (c) \(m\) and \(n\) are both positive and even.
Chapter 6: Problem 63
In your own words, describe how you would integrate \(\int \sin ^{m} x \cos ^{n} x d x\) for each condition. (a) \(m\) is positive and odd. (b) \(n\) is positive and odd. (c) \(m\) and \(n\) are both positive and even.
All the tools & learning materials you need for study success - in one app.
Get started for freeLaplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=e^{a t} $$
Evaluate the definite integral. $$ \int_{0}^{\pi / 4} \sec ^{2} t \sqrt{\tan t} d t $$
Let \(f^{\prime \prime}(x)\) be continuous. Show that $$ \lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x) $$
Consider the region satisfying the inequalities. (a) Find the area of the region. (b) Find the volume of the solid generated by revolving the region about the \(x\) -axis. (c) Find the volume of the solid generated by revolving the region about the \(y\) -axis. $$ y \leq e^{-x}, y \geq 0, x \geq 0 $$
In Exercises 59 and \(60,\) (a) explain why L'Hôpital's Rule cannot be used to find the limit, (b) find the limit analytically, and (c) use a graphing utility to graph the function and approximate the limit from the graph. Compare the result with that in part (b). \(\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.