Chapter 6: Problem 62
Use integration by parts to verify the formula. (For Exercises \(57-60\), assume that \(n\) is a positive integer.) $$ \int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}+C $$
Chapter 6: Problem 62
Use integration by parts to verify the formula. (For Exercises \(57-60\), assume that \(n\) is a positive integer.) $$ \int e^{a x} \cos b x d x=\frac{e^{a x}(a \cos b x+b \sin b x)}{a^{2}+b^{2}}+C $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) find the indefinite integral in two different ways. (b) Use a graphing utility to graph the antiderivative (without the constant of integration) obtained by each method to show that the results differ only by a constant. (c) Verify analytically that the results differ only by a constant. $$ \int \sec ^{2} x \tan x d x $$
Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1},\) where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1 .\) Then evaluate each integral. (a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\) (b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\) (c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)
Find the integral. Use a computer algebra system to confirm your result. $$ \int \cot ^{3} 2 x d x $$
Find the values of \(a\) and \(b\) such that \(\lim _{x \rightarrow 0} \frac{a-\cos b x}{x^{2}}=2\).
Consider the region satisfying the inequalities. (a) Find the area of the region. (b) Find the volume of the solid generated by revolving the region about the \(x\) -axis. (c) Find the volume of the solid generated by revolving the region about the \(y\) -axis. $$ y \leq e^{-x}, y \geq 0, x \geq 0 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.