Chapter 6: Problem 61
Use integration by parts to verify the formula. (For Exercises \(57-60\), assume that \(n\) is a positive integer.) $$ \int e^{a x} \sin b x d x=\frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}+C $$
Chapter 6: Problem 61
Use integration by parts to verify the formula. (For Exercises \(57-60\), assume that \(n\) is a positive integer.) $$ \int e^{a x} \sin b x d x=\frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}+C $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f^{\prime}\) is continuous on \([0, \infty)\) and \(\lim _{x \rightarrow \infty} f(x)=0,\) then \(\int_{0}^{\infty} f^{\prime}(x) d x=-f(0)\)
Consider the region satisfying the inequalities. (a) Find the area of the region. (b) Find the volume of the solid generated by revolving the region about the \(x\) -axis. (c) Find the volume of the solid generated by revolving the region about the \(y\) -axis. $$ y \leq e^{-x}, y \geq 0, x \geq 0 $$
True or False? In Exercises 67-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(p(x)\) is a polynomial, then \(\lim _{x \rightarrow \infty}\left[p(x) / e^{x}\right]=0\).
Use mathematical induction to verify that the following integral converges for any positive integer \(n\). \(\int_{0}^{\infty} x^{n} e^{-x} d x\)
Find the integral. Use a computer algebra system to confirm your result. $$ \int \tan ^{4} \frac{x}{2} \sec ^{4} \frac{x}{2} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.