Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Think About It In Exercises 55-58, L'Hopital's Rule is used incorrectly. Describe the error.\(\begin{aligned} \lim _{x \rightarrow \infty} \operatorname{xec} \operatorname{sen} \frac{1}{x} &=\lim _{x \rightarrow \infty} \frac{\cos (1 / x)}{1 / x} \\ &=\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)]\left(1 / x^{2}\right)}{-1 \times x^{2}} \\ &=0 \end{aligned}\)

Short Answer

Expert verified
The error originates from the incorrect application of L'Hopital's Rule where it doesn't apply and an incorrect differential calculation. The corrected answer is the limit does not exist.

Step by step solution

01

Identity the mistake

Verify if the limit problem is in an indeterminate form before applying L'Hopital's Rule. In the Exercise the function is not in the form of 0/0 or ∞/∞, therefore applying L'Hopital's Rule is inappropriate. Additionally, there's an incorrect transformation in the calculations from \( \cos (1 / x) / (1/x) \) to \( -\sin (1 / x) / x^{2} \)
02

Correct the calculations

The correct derivative of \( \cos(1 / x) \) with respect to \( x \) is \( -\sin(1 / x) / x^2 \) and for \( 1 / x \) is \( -1 / x^2 \), so the transformed equation should be \( \lim _{x \rightarrow \infty} \frac{-\sin (1 / x)/( x^{2})}{-1 / x^{2}} \) which simplifies to \( \lim _{x \rightarrow \infty} \sin(1 / x) \) . This limit does not exist because as \( x \) approaches infinity, \( sin(1 / x) \) will oscilate between -1 and 1.
03

Correct the answer

Given that the limit doesn't exist, you conclude that the incorrect answer of 0 from the exercise is due to the wrong application of L'Hopital's Rule

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Think About It In Exercises 55-58, L'Hopital's Rule is used incorrectly. Describe the error. \(\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{e^{x}}=\lim _{x \rightarrow 0} 2 e^{x}=2\)

Continuous Functions In Exercises 73 and \(74,\) find the value of \(c\) that makes the function continuous at \(x=0\). \(f(x)=\left\\{\begin{array}{ll}\left(e^{x}+x\right)^{1 / x}, & x \neq 0 \\ c, & x=0\end{array}\right.\)

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) is continuous on \([0, \infty)\) and \(\lim _{x \rightarrow \infty} f(x)=0\), then \(\int_{0}^{\infty} f(x) d x\) converges

Consider the limit \(\lim _{x \rightarrow 0^{+}}(-x \ln x)\) (a) Describe the type of indeterminate form that is obtained by direct substitution. (b) Evaluate the limit. (c) Use a graphing utility to verify the result of part (b). FOR FURTHER INFORMATION For a geometric approach to this exercise, see the article "A Geometric Proof of \(\lim _{l \rightarrow 0^{+}}(-d \ln d)=0\) " by John H. Mathews in the College Mathematics Journal. To view this article, go to the website www.matharticles.com.

Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=t $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free