Chapter 6: Problem 56
Define the terms converges and diverges when working with improper integrals.
Chapter 6: Problem 56
Define the terms converges and diverges when working with improper integrals.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn L'Hôpital's 1696 calculus textbook, he illustrated his rule using the limit of the function \(f(x)=\frac{\sqrt{2 a^{3} x-x^{4}}-a \sqrt[3]{a^{2} x}}{a-\sqrt[4]{a x^{3}}}\) as \(x\) approaches \(a, a>0 .\) Find this limit.
Determine all values of \(p\) for which the improper integral converges. $$ \int_{1}^{\infty} \frac{1}{x^{p}} d x $$
Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\cos a t $$
Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\sinh a t $$
(b) Use the result of part (a) to find the equation of the path of the weight. Use a graphing utility to graph the path and compare it with the figure. (c) Find any vertical asymptotes of the graph in part (b). (d) When the person has reached the point (0,12) , how far has the weight moved?A person moves from the origin along the positive \(y\) -axis pulling a weight at the end of a 12 -meter rope (see figure). Initially, the weight is located at the point (12,0) . (a) Show that the slope of the tangent line of the path of the weight is $$ \frac{d y}{d x}=-\frac{\sqrt{144-x^{2}}}{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.