Chapter 6: Problem 54
Integrate \(\int x \sqrt{4-x} d x\) (a) by parts, letting \(d v=\sqrt{4-x} d x\). (b) by substitution, letting \(u=4-x\).
Chapter 6: Problem 54
Integrate \(\int x \sqrt{4-x} d x\) (a) by parts, letting \(d v=\sqrt{4-x} d x\). (b) by substitution, letting \(u=4-x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTrue or False? In Exercises 67-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(p(x)\) is a polynomial, then \(\lim _{x \rightarrow \infty}\left[p(x) / e^{x}\right]=0\).
Find the integral. Use a computer algebra system to confirm your result. $$ \int \tan ^{4} \frac{x}{2} \sec ^{4} \frac{x}{2} d x $$
Use integration by parts to verify the reduction formula. $$ \int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x $$
Let \(\int_{-\infty}^{\infty} f(x) d x\) be convergent and let \(a\) and \(b\) be real numbers where \(a \neq b\). Show that \(\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x=\int_{-\infty}^{b} f(x) d x+\int_{b}^{\infty} f(x) d x\)
Consider the integral \(\int_{0}^{\pi / 2} \frac{4}{1+(\tan x)^{n}} d x\) where \(n\) is a positive integer. (a) Is the integral improper? Explain. (b) Use a graphing utility to graph the integrand for \(n=2,4,\) \(8,\) and \(12 .\) (c) Use the graphs to approximate the integral as \(n \rightarrow \infty\). (d) Use a computer algebra system to evaluate the integral for the values of \(n\) in part (b). Make a conjecture about the value of the integral for any positive integer \(n\). Compare your results with your answer in part (c).
What do you think about this solution?
We value your feedback to improve our textbook solutions.