Chapter 6: Problem 54
Find the arc length of the curve over the given interval. $$ y=\frac{1}{2} x^{2}, \quad[0,4] $$
Chapter 6: Problem 54
Find the arc length of the curve over the given interval. $$ y=\frac{1}{2} x^{2}, \quad[0,4] $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 65 and 66, apply the Extended Mean Value Theorem to the functions \(f\) and \(g\) on the given interval. Find all values \(c\) in the interval \((a, b)\) such that \(\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\) \(\begin{array}{l} \underline{\text { Functions }} \\ f(x)=\ln x, \quad g(x)=x^{3} \end{array} \quad \frac{\text { Interval }}{\left[1,4\right]}\)
Evaluate the definite integral. $$ \int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2} x+1\right) d x $$
Determine all values of \(p\) for which the improper integral converges. $$ \int_{1}^{\infty} \frac{1}{x^{p}} d x $$
Describe the different types of improper integrals
Let \(f^{\prime \prime}(x)\) be continuous. Show that $$ \lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.