Chapter 6: Problem 52
Evaluate the definite integral. $$ \int_{0}^{\pi / 4} \sec ^{2} t \sqrt{\tan t} d t $$
Chapter 6: Problem 52
Evaluate the definite integral. $$ \int_{0}^{\pi / 4} \sec ^{2} t \sqrt{\tan t} d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDescribe the different types of improper integrals
Determine all values of \(p\) for which the improper integral converges. $$ \int_{0}^{1} \frac{1}{x^{p}} d x $$
Prove the following generalization of the Mean Value Theorem. If \(f\) is twice differentiable on the closed interval \([a, b],\) then \(f(b)-f(a)=f^{\prime}(a)(b-a)-\int_{a}^{b} f^{\prime \prime}(t)(t-b) d t\).
Think About It In Exercises 55-58, L'Hopital's Rule is used incorrectly. Describe the error.\(\begin{aligned} \lim _{x \rightarrow \infty} \operatorname{xec} \operatorname{sen} \frac{1}{x} &=\lim _{x \rightarrow \infty} \frac{\cos (1 / x)}{1 / x} \\ &=\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)]\left(1 / x^{2}\right)}{-1 \times x^{2}} \\ &=0 \end{aligned}\)
Use mathematical induction to verify that the following integral converges for any positive integer \(n\). \(\int_{0}^{\infty} x^{n} e^{-x} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.