Chapter 6: Problem 48
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\sin ^{2} x-\cos ^{2} x}{\cos x} d x $$
Chapter 6: Problem 48
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\sin ^{2} x-\cos ^{2} x}{\cos x} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the area of the region bounded by the graphs of the equations.$$ y=\sin x, \quad y=\sin ^{3} x, \quad x=0, \quad x=\pi / 2 $$
Show that \(\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0\) for any integer \(n>0\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) is continuous on \([0, \infty)\) and \(\int_{0}^{\infty} f(x) d x\) diverges, then \(\lim _{x \rightarrow \infty} f(x) \neq 0\)
Consider the region satisfying the inequalities. (a) Find the area of the region. (b) Find the volume of the solid generated by revolving the region about the \(x\) -axis. (c) Find the volume of the solid generated by revolving the region about the \(y\) -axis. $$ y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1 $$
Use integration by parts to verify the reduction formula. $$ \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.