Chapter 6: Problem 47
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\cot ^{2} t}{\csc t} d t $$
Chapter 6: Problem 47
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\cot ^{2} t}{\csc t} d t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a computer algebra system to evaluate the definite integral. $$ \int_{0}^{\pi / 4} \sin 2 \theta \sin 3 \theta d \theta $$
Rewrite the improper integral as a proper integral using the given \(u\) -substitution. Then use the Trapezoidal Rule with \(n=5\) to approximate the integral. $$ \int_{0}^{1} \frac{\cos x}{\sqrt{1-x}} d x, u=\sqrt{1-x} $$
Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. $$ y=\tan x, \quad y=0, \quad x=-\pi / 4, \quad x=\pi / 4 $$
For what value of \(c\) does the integral \(\int_{1}^{\infty}\left(\frac{c x}{x^{2}+2}-\frac{1}{3 x}\right) d x\) converge? Evaluate the integral for this value of \(c\)
Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1},\) where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1 .\) Then evaluate each integral. (a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\) (b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\) (c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.