Chapter 6: Problem 40
Find the integral. $$ \int \cos 4 \theta \cos (-3 \theta) d \theta $$
Chapter 6: Problem 40
Find the integral. $$ \int \cos 4 \theta \cos (-3 \theta) d \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeLaplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=t $$
Given continuous functions \(f\) and \(g\) such that \(0 \leq f(x) \leq g(x)\) on the interval \([a, \infty),\) prove the following. (a) If \(\int_{a}^{\infty} g(x) d x\) converges, then \(\int_{a}^{\infty} f(x) d x\) converges. (b) If \(\int_{a}^{\infty} f(x) d x\) diverges, then \(\int_{a}^{\infty} g(x) d x\) diverges.
A nonnegative function \(f\) is called a probability density function if \(\int_{-\infty}^{\infty} f(t) d t=1 .\) The probability that \(x\) lies between \(a\) and \(b\) is given by \(P(a \leq x \leq b)=\int_{a}^{b} f(t) d t\) The expected value of \(x\) is given by \(E(x)=\int_{-\infty}^{\infty} t f(t) d t\). Show that the nonnegative function is a probability density function, (b) find \(P(0 \leq x \leq 4),\) and (c) find \(E(x)\). $$ f(t)=\left\\{\begin{array}{ll} \frac{1}{7} e^{-t / 7}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$
Determine all values of \(p\) for which the improper integral converges. $$ \int_{0}^{1} \frac{1}{x^{p}} d x $$
Find the integral. Use a computer algebra system to confirm your result. $$ \int \frac{\cot ^{2} t}{\csc t} d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.