Chapter 6: Problem 39
Use the tabular method to find the integral. $$ \int x \sec ^{2} x d x $$
Chapter 6: Problem 39
Use the tabular method to find the integral. $$ \int x \sec ^{2} x d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. $$ y=\tan x, \quad y=0, \quad x=-\pi / 4, \quad x=\pi / 4 $$
Prove that \(I_{n}=\left(\frac{n-1}{n+2}\right) I_{n-1},\) where \(I_{n}=\int_{0}^{\infty} \frac{x^{2 n-1}}{\left(x^{2}+1\right)^{n+3}} d x, \quad n \geq 1 .\) Then evaluate each integral. (a) \(\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{4}} d x\) (b) \(\int_{0}^{\infty} \frac{x^{3}}{\left(x^{2}+1\right)^{5}} d x\) (c) \(\int_{0}^{\infty} \frac{x^{5}}{\left(x^{2}+1\right)^{6}} d x\)
Find the integral. Use a computer algebra system to confirm your result. $$ \int \csc ^{4} \theta d \theta $$
Consider the integral \(\int_{0}^{\pi / 2} \frac{4}{1+(\tan x)^{n}} d x\) where \(n\) is a positive integer. (a) Is the integral improper? Explain. (b) Use a graphing utility to graph the integrand for \(n=2,4,\) \(8,\) and \(12 .\) (c) Use the graphs to approximate the integral as \(n \rightarrow \infty\). (d) Use a computer algebra system to evaluate the integral for the values of \(n\) in part (b). Make a conjecture about the value of the integral for any positive integer \(n\). Compare your results with your answer in part (c).
Laplace Transforms Let \(f(t)\) be a function defined for all positive values of \(t\). The Laplace Transform of \(f(t)\) is defined by \(F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t\) if the improper integral exists. Laplace Transforms are used to solve differential equations. Find the Laplace Transform of the function. $$ f(t)=\sinh a t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.