Chapter 5: Problem 79
Let \(V\) be the region in the cartesian plane consisting of all points \((x, y)\) satisfying the simultaneous conditions \(|x| \leq y \leq|x|+3\) and \(y \leq 4\) Find the centroid \((\bar{x}, \bar{y})\) of \(V\).
Chapter 5: Problem 79
Let \(V\) be the region in the cartesian plane consisting of all points \((x, y)\) satisfying the simultaneous conditions \(|x| \leq y \leq|x|+3\) and \(y \leq 4\) Find the centroid \((\bar{x}, \bar{y})\) of \(V\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine which value best approximates the volume of the solid generated by revolving the region bounded by the graphs of the equations about the \(x\) -axis. (Make your selection on the basis of a sketch of the solid and not by performing any calculations.) \(y=e^{-x^{2} / 2}, \quad y=0, \quad x=0, \quad x=2\) (a) 3 (b) -5 (c) 10 (d) 7 (e) 20
In Exercises \(35-40,\) sketch the region bounded by the graphs of the functions, and find the area of the region. $$ f(x)=2 \sin x, \quad g(x)=\tan x, \quad-\frac{\pi}{3} \leq x \leq \frac{\pi}{3} $$
(a) use a graphing utility to graph the region bounded by the graphs of the equations, (b) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results. $$ f(x)=2 \sin x+\cos 2 x, \quad y=0, \quad 0 < x \leq \pi $$
Sketch the region bounded by the graphs of the algebraic functions and find the area of the region. $$ y=\frac{1}{x^{2}}, \quad y=0, \quad x=1, \quad x=5 $$
In Exercises \(27-34,\) (a) use a graphing utility to graph the region bounded by the graphs of the equations, \((b)\) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results. $$ f(x)=x\left(x^{2}-3 x+3\right), \quad g(x)=x^{2} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.