Chapter 5: Problem 40
Use the disk method to verify that the volume of a right circular cone is \(\frac{1}{3} \pi r^{2} h,\) where \(r\) is the radius of the base and \(h\) is the height.
Chapter 5: Problem 40
Use the disk method to verify that the volume of a right circular cone is \(\frac{1}{3} \pi r^{2} h,\) where \(r\) is the radius of the base and \(h\) is the height.
All the tools & learning materials you need for study success - in one app.
Get started for freeOn the Richter scale, the magnitude \(R\) of an earthquake of intensity \(I\) is \(R=\frac{\ln I-\ln I_{0}}{\ln 10}\) where \(I_{0}\) is the minimum intensity used for comparison. Assume that \(I_{0}=1\) (a) Find the intensity of the 1906 San Francisco earthquake \((R=8.3)\) (b) Find the factor by which the intensity is increased if the Richter scale measurement is doubled. (c) Find \(d R / d I\).
Let \(V\) be the region in the cartesian plane consisting of all points \((x, y)\) satisfying the simultaneous conditions \(|x| \leq y \leq|x|+3\) and \(y \leq 4\) Find the centroid \((\bar{x}, \bar{y})\) of \(V\).
The management at a certain factory has found that a worker can produce at most 30 units in a day. The learning curve for the number of units \(N\) produced per day after a new employee has worked \(t\) days is \(N=30\left(1-e^{k t}\right)\). After 20 days on the job, a particular worker produces 19 units. (a) Find the learning curve for this worker. (b) How many days should pass before this worker is producing 25 units per day?
What is a planar lamina? Describe what is meant by the center of mass \((\bar{x}, \bar{y})\) of a planar lamina.
The graphs of \(y=x^{4}-2 x^{2}+1\) and \(y=1-x^{2}\) intersect at three points. However, the area between the curves can be found by a single integral. Explain why this is so, and write an integral for this area.
What do you think about this solution?
We value your feedback to improve our textbook solutions.