Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(35-38\), set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the \(x\) -axis. $$ y=2 \sqrt{x}, \quad 4 \leq x \leq 9 $$

Short Answer

Expert verified
To get the surface area, compute the integral set up in the second step. As stated, it often involves complex calculations that are typically carried out with a calculator. The resolved value is the final surface area.

Step by step solution

01

Compute the derivative

The given function is \(y = 2 \sqrt{x}\) which can be rewritten as \(y = 2x^{1/2}\). The derivative of this function is: \[y^{'} = \frac{d y}{d x} = 2*\frac{1}{2}*x^{-1/2} = x^{-1/2}.\]
02

Set up the integral for the surface area

Substituting the function and its derivative into the surface area formula and between the limits of x give: \[A = 2\pi \int_{4}^{9} 2\sqrt{x} \sqrt{1+(x^{-1/2})^2} dx.\]
03

Evaluate the integral

Evaluate the integral either analytically or with calculator to get the value of the surface area. The integral is most of times computed with a calculator due to its complexity.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) use a graphing utility to graph the region bounded by the graphs of the equations, \((b)\) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results. $$ y=x^{4}-2 x^{2}, \quad y=2 x^{2} $$

(a) use a graphing utility to graph the region bounded by the graphs of the equations, \((b)\) find the area of the region, and (c) use the integration capabilities of the graphing utility to verify your results. $$ f(x)=x^{4}-4 x^{2}, g(x)=x^{3}-4 x $$

Irrigation Canal Gate The vertical cross section of an irrigation canal is modeled by \(f(x)=\frac{5 x^{2}}{x^{2}+4}\) where \(x\) is measured in feet and \(x=0\) corresponds to the center of the canal. Use the integration capabilities of a graphing utility to approximate the fluid force against a vertical gate used to stop the flow of water if the water is 3 feet deep.

The centroid of the plane region bounded by the graphs of \(y=f(x), y=0, x=0,\) and \(x=1\) is \(\left(\frac{5}{6}, \frac{5}{18}\right)\). Is it possible to find the centroid of each of the regions bounded by the graphs of the following sets of equations? If so, identify the centroid and explain your answer. (a) \(y=f(x)+2, y=2, x=0,\) and \(x=1\) (b) \(y=f(x-2), y=0, x=2,\) and \(x=3\) (c) \(y=-f(x), y=0, x=0,\) and \(x=1\) (d) \(y=f(x), y=0, x=-1,\) and \(x=1\)

In Exercises \(45-48,\) (a) use a graphing utility to graph the region bounded by the graphs of the equations, (b) explain why the area of the region is difficult to find by hand, and (c) use the integration capabilities of the graphing utility to approximate the area to four decimal places. $$ y=\sqrt{\frac{x^{3}}{4-x}}, y=0, x=3 $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free