Chapter 4: Problem 99
Evaluate the integral using the properties of even and odd functions as an aid. $$ \int_{-2}^{2} x^{2}\left(x^{2}+1\right) d x $$
Chapter 4: Problem 99
Evaluate the integral using the properties of even and odd functions as an aid. $$ \int_{-2}^{2} x^{2}\left(x^{2}+1\right) d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeVerify each rule by differentiating. Let \(a>0\). $$ \int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C $$
Find the indefinite integral using the formulas of Theorem 4.24 \(\int \frac{d x}{(x+2) \sqrt{x^{2}+4 x+8}}\)
In Exercises 83 and \(84,\) use the equation of the tractrix \(y=a \operatorname{sech}^{-1} \frac{x}{a}-\sqrt{a^{2}-x^{2}}, \quad a>0\) Find \(d y / d x\).
(a) integrate to find \(F\) as a function of \(x\) and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a). $$ F(x)=\int_{1}^{x} \frac{1}{t} d t $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.