Chapter 4: Problem 94
Prove that \(\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(t) d t\right]=f(v(x)) v^{\prime}(x)-f(u(x)) u^{\prime}(x)\).
Chapter 4: Problem 94
Prove that \(\frac{d}{d x}\left[\int_{u(x)}^{v(x)} f(t) d t\right]=f(v(x)) v^{\prime}(x)-f(u(x)) u^{\prime}(x)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \int \frac{d x}{25+x^{2}}=\frac{1}{25} \arctan \frac{x}{25}+C $$
Find the integral. \(\int \frac{\sinh x}{1+\sinh ^{2} x} d x\)
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
In Exercises \(88-92,\) verify the differentiation formula. \(\frac{d}{d x}[\cosh x]=\sinh x\)
Find the derivative of the function. \(y=2 x \sinh ^{-1}(2 x)-\sqrt{1+4 x^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.