Chapter 4: Problem 92
Verify the differentiation formula. \(\frac{d}{d x}[\operatorname{sech} x]=-\operatorname{sech} x \tanh x\)
Chapter 4: Problem 92
Verify the differentiation formula. \(\frac{d}{d x}[\operatorname{sech} x]=-\operatorname{sech} x \tanh x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{1}^{x} \sqrt[4]{t} d t $$
In Exercises \(63-68,\) find the limit. \(\lim _{x \rightarrow \infty} \sinh x\)
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) is continuous on \([a, b]\), then \(f\) is integrable on \([a, b]\).
Prove that \(\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right),
\quad-1
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{0}^{x} \sec ^{3} t d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.