Chapter 4: Problem 90
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
Chapter 4: Problem 90
Verify the differentiation formula. \(\frac{d}{d x}\left[\cosh ^{-1} x\right]=\frac{1}{\sqrt{x^{2}-1}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA horizontal plane is ruled with parallel lines 2 inches apart. A two-inch needle is tossed randomly onto the plane. The probability that the needle will touch a line is \(P=\frac{2}{\pi} \int_{0}^{\pi / 2} \sin \theta d \theta\) where \(\theta\) is the acute angle between the needle and any one of the parallel lines. Find this probability.
Verify the differentiation formula. \(\frac{d}{d x}\left[\operatorname{sech}^{-1} x\right]=\frac{-1}{x \sqrt{1-x^{2}}}\)
Find the derivative of the function. \(y=\left(\operatorname{csch}^{-1} x\right)^{2}\)
Find any relative extrema of the function. Use a graphing utility to confirm your result. \(h(x)=2 \tanh x-x\)
Use the Second Fundamental Theorem of Calculus to find \(F^{\prime}(x)\). $$ F(x)=\int_{1}^{x} \sqrt[4]{t} d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.